速寫 Day51
來源:赤倉
在6/23-6/26,
跟大學同學去宜花畢業旅行。
真的是累死了,
一直唱歌喉嚨好痛。
然後又每天聊天聊到一兩點。
因為疫情的關係大家好久沒有聚在一塊,
現在好不容易聚在一起,
反而已經是最後一次了。
畢業之際,雖然有許多不錯的回憶,
但心中真的還有許多滿滿的不捨。
之後照片整理整理後再寫一篇文章吧!
現在真的沒辦法。
一回來就好多東西要忙==
例如實習前要研讀的許多教程資料;
7/3要準備考的日檢N1;
或是日本交換線上課程準備要考期末;
更甚至最近家裡裝潢完成需要開始搬東西。或是要再去新竹領畢業證書之類的==
總之就是很多東西。
–
然後最近水電工、第四台、裝冰箱等等工人,
一直來,
我最近的下午完全沒辦法念書。
雖然覺得他們真的很累很辛苦,
可是……
我真的要開天窗啦!
啊啊啊啊啊啊啊!
然後還要碩士註冊前體檢,
插座還因為水電師傅接錯,
印表機不小心燒掉?
太多事了吧!
我真的要崩潰了喔?
日文總複習
- すら ─ 就連
- だに ─ 光是
- たにとも…ない ─ 就連1次、1秒…都沒有
- がてら ─ 順便
- かたがた ─ (正式) 順便
- かたわら ─ 另一方面
- ずくめ ─ 滿是
- まみれ ─ 渾身(負面)
- が早いか ─ 一…就…
- や否や ─ 一…就…
- そばから ─ 才剛…就…(負面)
- ~なり ─ 一…的同時
- ~んがために ─ 為了…
- ~とばかりに ─ 彷彿機會來了、像是在說…的樣子
- ~とばかりに ─ (程度很大)
- (に)~かのごとく(き) ─ 彷彿(強調,但沒實際做!)
- てしかるべき ─ (不滿)本來就應該
- べからず ─ 不能、禁止
- (ある)まじき ─ 身為…(的立場)是不能…的
- Aもさることながら…Bも ─ A不用說,但B也非常…(強調)
- はおろか ─ 不用說…就連(負面)
- にもまして ─ 比…更(以前)
- に越したことはない ─ 雖然這樣做比較好,但…
- には及ばない ─ 不必
- にはあたらない ─ 不值得
- までもない ─ 不必特地
- を皮切りに ─ …為開始
- を限りに ─ 1. …為最後 2. 盡全力
- をもって ─ 就是で(通常接時間後面)
- ばこそ ─ 正因為
- ならでは ─ 特有的
- あっての ─ 有著…(才有的)
- をおいて…ない ─ 除了…其他人都不能
- ~なり~なり ─ 都可以喔
- ~つ~つ ─ 重複
- ~であれ~であれ ─ 不管、無論
- ~といい~といい ─ 不管A還是B,全部都
- ~うが~うが ─ 不管A還是B(同種類),都與我無關
- ~うと~まいが ─ 不管A還是B(正反面),都與我無關
- ~うが~なかろうか ─ 不管A還是B,都可以…
- たところで ─ 就算(現在開始…) 也沒辦法…
- いかんだ ─ 根據
- をよそに ─ 不顧 (周圍的意見)
- をものともせず ─ 不顧 (糟糕的狀況)
- たるもの ─ 身為(…立場) 必須…
- ともあろうものが ─ (批評高位階的人)
- ゆえに ─ 因為
- と思いきや ─ 原以為…卻 (正面)
- といえども ─ 原以為…但 (不能)
- からある ─ (數量)以上
- からなる ─ 組成
- めく/めいた ─ 春、謎題、說教
- ぶる ─ 假裝、刻意
- てならない ─ 非常(殘念、擔心)
- てやまない ─ 無比(感激、願望)
- 極まりない ─ 極為
- の至り ─ 無比
- を禁じ得ない ─ 不禁
- に堪えない ─ 忍不住
- を余儀なくされる ─ 不得不
- ずにはいられない ─ 不由得、不得不
稍微的筆記
Deep Learning with Python - Chollet
- Optimization: the process of adjusting a model to get the best performance possible on the training data.
- Generalization: how well the trained model performs on data it has never seen before.
- Regulization: the process of fighting overfitting.
Preventing overfitting:
- Get more training data.
- Reduce the capacity of the network.
- Add weight regularization.
- Add dropout. (introducing noice)
–
Finding Alphas: A Quantitative Approach to Building Trading Strategies - Tulchinsky et al.
Introduction to Alpha Design
- Alpha design: A forecast of the return on each of the financial securities, to make predictions about future movements.
- Data \(\rightarrow\) (e.g. historical proces, volume, shares traded, etc.) \(\rightarrow\) Alpha \(\rightarrow\) Price Prediction
- The existence of alphas is a result of the imperfect flow of information among market participants with competing objectives.
- Rules in trading are called alphas.
- Cutting losses: Letting go of rules that no longer work.
- Applying all rules simultaneously is the key to success. No single rule can ever be relied upon completely, so it’s necessary to come up with a strategy for using rules simultaneously. (Some rule should be cut immediately when emergency happens)
Design and Evaluation
Alpha design
- Typically, an alpha is utilized as a component of a trading strategy, which converts the alpha’s predictions into actual trading decisions. The strategy also considers practical issues such as transaction costs and portfolio risk.
Alpha Types
- Intraday alphas: rebalanced during trading hours of the day.
(1) Rebalance at each interval. e.g. 1 min/5 min.
(2) Rebalance triggered by some events such as ticks/orders/fills or predefined events.
- Intraday alphas: rebalanced during trading hours of the day.
- Daily alphas: rebalance every day.
(1) Delay N: use data of N days ago.
(2) Delay 0 snapshot: use data before a certain time snapshot.
(3) MOO/MOC: alphas trade at market open/close auction session.
- Daily alphas: rebalance every day.
- Weekly/Monthly alphas: rebalanced every week/month.
Development of an alpha:
- Using public information by searching signals/patterns:
(1) Price/Volume.
(2) Fundamentals.
(3) Macro data.
(4) Text.
(5) Multimedia. (Extract text information from the video/audio). - Other information from which alphas are not derived directly but may be used to improve the performance of alphas:
(1) Risk factor models. (risk mitigation.)
(2) Relationship models. (lead or lag due to correlation.)
(3) Microstructure models. (real trading.)
Practical alpha evaluaion
- Run a simulation (backtest) to measure characteristics:
(1) Information ratio: The mean of the alpha’s returns divided by the standard deviation of the returns.
-> Measure Consistency.
-> which combined with the length of the observation peroid can be used to determine how confident we are to determine that the alpha is not some random noise.
(2) Margin: The amount of profit made by the alpha in the simulation divided by the amount of trading that was done.
-> Measure Sensitivity to transaction costs.
(3) Uniqueness: The maximum correlation of the alpha to others in the pool of alphas.
-> Lower correlation means more valuable alpha.
Develop an alpha:
- Collect information.
- Come up with an idea.
- Translate into a mathematical expression. (Positive alpha \(\rightarrow\) long position, vice versa.)
- Transform the raw expression by applying operations.
- Final robust alpha.
- Translate into positions in a financial instrument.
- Check for robustness, such as High In-sample / Good Out-of-sample Information Ratio, less fitting, small drawdown, etc.
Improving alpha:
- Risk mitigation: requiring our portfolios to be always long/short balanced within each industry.
- Relative size is more accurate as a predictor: Concept of rank.
- Using Decay: averaging alpha signal within a time window. (To reduce turnover.)
今日其他進度:
- 日文N1文法、N1題目
- 一堆的動畫
我會繼續努力的。