速寫 Day51


來源:赤倉

在6/23-6/26,
跟大學同學去宜花畢業旅行
真的是累死了,
一直唱歌喉嚨好痛。
然後又每天聊天聊到一兩點。

因為疫情的關係大家好久沒有聚在一塊,
現在好不容易聚在一起,
反而已經是最後一次了。
畢業之際,雖然有許多不錯的回憶,
但心中真的還有許多滿滿的不捨。

之後照片整理整理後再寫一篇文章吧!

現在真的沒辦法。
一回來就好多東西要忙==
例如實習前要研讀的許多教程資料;
7/3要準備考的日檢N1;
或是日本交換線上課程準備要考期末;
更甚至最近家裡裝潢完成需要開始搬東西。
或是要再去新竹領畢業證書之類的==

總之就是很多東西。

然後最近水電工、第四台、裝冰箱等等工人,
一直來,
我最近的下午完全沒辦法念書。

雖然覺得他們真的很累很辛苦,
可是……
我真的要開天窗啦!
啊啊啊啊啊啊啊!

然後還要碩士註冊前體檢,
插座還因為水電師傅接錯,
印表機不小心燒掉?

太多事了吧!
我真的要崩潰了喔?


日文總複習

  • すら就連
  • だに光是
  • たにとも…ない就連1次、1秒…都沒有
  • がてら順便
  • かたがた(正式) 順便
  • かたわら另一方面
  • ずくめ滿是
  • まみれ渾身(負面)
  • が早いか一…就…
  • や否や一…就…
  • そばから才剛…就…(負面)
  • ~なり一…的同時
  • ~んがために為了…
  • ~とばかりに彷彿機會來了、像是在說…的樣子
  • ~とばかりに(程度很大)
  • (に)~かのごとく(き)彷彿(強調,但沒實際做!)
  • てしかるべき(不滿)本來就應該
  • べからず不能、禁止
  • (ある)まじき身為…(的立場)是不能…的
  • Aもさることながら…BもA不用說,但B也非常…(強調)
  • はおろか不用說…就連(負面)
  • にもまして比…更(以前)
  • に越したことはない雖然這樣做比較好,但…
  • には及ばない不必
  • にはあたらない不值得
  • までもない不必特地
  • を皮切りに…為開始
  • を限りに1. …為最後 2. 盡全力
  • をもって就是で(通常接時間後面)
  • ばこそ正因為
  • ならでは特有的
  • あっての有著…(才有的)
  • をおいて…ない除了…其他人都不能
  • ~なり~なり都可以喔
  • ~つ~つ重複
  • ~であれ~であれ不管、無論
  • ~といい~といい不管A還是B,全部都
  • ~うが~うが不管A還是B(同種類),都與我無關
  • ~うと~まいが不管A還是B(正反面),都與我無關
  • ~うが~なかろうか不管A還是B,都可以…
  • たところで就算(現在開始…) 也沒辦法…
  • いかんだ根據
  • をよそに不顧 (周圍的意見)
  • をものともせず不顧 (糟糕的狀況)
  • たるもの身為(…立場) 必須…
  • ともあろうものが(批評高位階的人)
  • ゆえに因為
  • と思いきや原以為…卻 (正面)
  • といえども原以為…但 (不能)
  • からある(數量)以上
  • からなる組成
  • めく/めいた春、謎題、說教
  • ぶる假裝、刻意
  • てならない非常(殘念、擔心)
  • てやまない無比(感激、願望)
  • 極まりない極為
  • の至り無比
  • を禁じ得ない不禁
  • に堪えない忍不住
  • を余儀なくされる不得不
  • ずにはいられない不由得、不得不

稍微的筆記

Deep Learning with Python - Chollet
  • Optimization: the process of adjusting a model to get the best performance possible on the training data.
  • Generalization: how well the trained model performs on data it has never seen before.
  • Regulization: the process of fighting overfitting.
Preventing overfitting:
  • Get more training data.
  • Reduce the capacity of the network.
  • Add weight regularization.
  • Add dropout. (introducing noice)

Finding Alphas: A Quantitative Approach to Building Trading Strategies - Tulchinsky et al.

Introduction to Alpha Design
  • Alpha design: A forecast of the return on each of the financial securities, to make predictions about future movements.
  • Data \(\rightarrow\) (e.g. historical proces, volume, shares traded, etc.) \(\rightarrow\) Alpha \(\rightarrow\) Price Prediction
  • The existence of alphas is a result of the imperfect flow of information among market participants with competing objectives.
  • Rules in trading are called alphas.
  • Cutting losses: Letting go of rules that no longer work.
  • Applying all rules simultaneously is the key to success. No single rule can ever be relied upon completely, so it’s necessary to come up with a strategy for using rules simultaneously. (Some rule should be cut immediately when emergency happens)
Design and Evaluation
Alpha design
  • Typically, an alpha is utilized as a component of a trading strategy, which converts the alpha’s predictions into actual trading decisions. The strategy also considers practical issues such as transaction costs and portfolio risk.
Alpha Types
    1. Intraday alphas: rebalanced during trading hours of the day.
      (1) Rebalance at each interval. e.g. 1 min/5 min.
      (2) Rebalance triggered by some events such as ticks/orders/fills or predefined events.
    1. Daily alphas: rebalance every day.
      (1) Delay N: use data of N days ago.
      (2) Delay 0 snapshot: use data before a certain time snapshot.
      (3) MOO/MOC: alphas trade at market open/close auction session.
    1. Weekly/Monthly alphas: rebalanced every week/month.
Development of an alpha:
  • Using public information by searching signals/patterns:
    (1) Price/Volume.
    (2) Fundamentals.
    (3) Macro data.
    (4) Text.
    (5) Multimedia. (Extract text information from the video/audio).
  • Other information from which alphas are not derived directly but may be used to improve the performance of alphas:
    (1) Risk factor models. (risk mitigation.)
    (2) Relationship models. (lead or lag due to correlation.)
    (3) Microstructure models. (real trading.)

Practical alpha evaluaion
  • Run a simulation (backtest) to measure characteristics:
    (1) Information ratio: The mean of the alpha’s returns divided by the standard deviation of the returns.
    -> Measure Consistency.
    -> which combined with the length of the observation peroid can be used to determine how confident we are to determine that the alpha is not some random noise.
    (2) Margin: The amount of profit made by the alpha in the simulation divided by the amount of trading that was done.
    -> Measure Sensitivity to transaction costs.
    (3) Uniqueness: The maximum correlation of the alpha to others in the pool of alphas.
    -> Lower correlation means more valuable alpha.
Develop an alpha:
    1. Collect information.
    1. Come up with an idea.
    1. Translate into a mathematical expression. (Positive alpha \(\rightarrow\) long position, vice versa.)
    1. Transform the raw expression by applying operations.
    1. Final robust alpha.
    1. Translate into positions in a financial instrument.
    1. Check for robustness, such as High In-sample / Good Out-of-sample Information Ratio, less fitting, small drawdown, etc.
Improving alpha:
  • Risk mitigation: requiring our portfolios to be always long/short balanced within each industry.
  • Relative size is more accurate as a predictor: Concept of rank.
  • Using Decay: averaging alpha signal within a time window. (To reduce turnover.)

今日其他進度:

  • 日文N1文法、N1題目
  • 一堆的動畫

我會繼續努力的。




Do you want to know me more private?→Click!