速寫 Day50
依舊是沒速寫day,
放瑪奇瑪壓壓驚。
個人真的是私心喜歡這張臨摹。是因為裝潢還沒完全好。真的不是因為我懶==
今日日文單字:
日文文法 ─ 四篇文章
- とうてい…ない ─ 無法
- とういうと そうではない ─ 不是
- どころか ─ 不用說,但…
- Aと引き換えに、B ─ 相反的
- とりわけ/なんといっても ─ 當中最為特別
- のみならず ─ 不僅
- が欠かせない ─ 不可或缺
- …は…に限られる ─ 只有
- (が)も幸(さいわ)いして/のおかげで ─ 因為…的原因(才能…)
- さぞ/きっととても ─ 一定非常
- ものの ─ 雖然
- 思いきや ─ 原以為…但
- したがって/それだから ─ 因此
- ないわけではない ─ 也不是沒有…
- ならでは ─ 只有…(才做的到)
- Vうにも…ない ─ 想…也無法
- かたくない ─ 不難
稍微的筆記
Pattern Recognition and Machine Learning ─ Bishop
Decision Theory
- Inference stage: use training data to learn a model for \(p(C_k|x)\)
- Decision stage: use these posterior probabilities to make optimal class assignments.
- Generative models: approaches that explicitly or implicitly model the distribution of inputs as well as outputs.
-> can detect outlier/novelty because it can model the distribution. - Discriminative models: approaches that model the posterior probabilities directly.
- Maximizing joint probability \(p(x,C_k)\) is equivalent to maximizing posterior probability \(p(C_k|x)\) because \(p(x)\) is common to all terms.
- Minkowski loss function: a simple generalization of the squared loss: \(E(L_q)=\int\int |y(x)-t|^qp(x,t)dxdt\)
Entropy
- Kullback-Leibler divergence \(KL(p||q)=\int p(x)ln(\dfrac{q(x)}{p(x)})dx \geq 0\) if and only if \(p(x)=q(x)\).
- We can try to approximate the distribution using some parametric distribution \(q(x|\theta)\), governed by a set of adjustable parameters \(\theta\), by minimizing the KL divergence between \(p(x)\space and\space q(x|\theta)\)
- Conditional entropy of y given x: \(H(x,y)=H(y|x)+H(x)\)
–
- Mutual information: the reduction in the uncertainty about x by virtue of being told the value of y.
- \(I(x,y)=-\int\int p(x,y)ln(\dfrac{p(x)p(y)}{p(x,y)})dxdy\), and \(I(x,y)\geq0\) if and only if x and y are independent.
- \(I(x,y)=H(x)-H(x|y)=H(y)-H(y|x)\)
今日其他進度:
- 日文N1文法、N1題目
- 一堆的動畫
我會繼續努力的。